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ABSTRACT

Consider a general Two-Point Boundary Value Problem (TPBVP) :
y'(t) = f(t,y) a<t<b
Bly(a) + Bzy(b) =w
where f:RnJrl > Rn, f e c2, Bl and B2 are nxn matrices and w ¢ Rn.

It is shown how one can bound a posteriori the error made in the numerical
solution of the TPBVP. The error bounds obtained are rigorous and include the
truncation and the roundoff error. 1In addition, the computations establish
the existence of solutions to the TPBVP.

Numerical schemes are developed for the case where f(t,y) is a polynomial

in t and y . Examples are given of computational existence proofs for

problems where analytical existence proofs are not known.

Key Words: Two-Point boundary value problem, g
a posteriori, error bounds Ascestios /

3 ) White Section

AMS (MOS) Subject Classification 65L10 ] Suft Sectios
SANNOMCED a
Work Unit No. 7 -Numerical Analysis JUSTIFICATION. ——

8y, .
21278IBTTION/AVAILABILITY GDOER
SR AVAIL wd/m PERIAL

f

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.

- ’ -

R



SIGNIFICANCE AND EXPLANATION
Consider a general two-point boundary value problem

¥U(E) = £(t, v (E)
a st <'b (1)

Bly(a) + Bzy(b) =W

where y(t) and f(t,y(t)) are n dimensional vector-valued functions,
Bl and 82 are nxn matrices and w is n vector.

Many problems in physics, chemistry and engineering can be put into the
above form. In most cases, it is impossible to write down explicit formulas
for solutions of two-point boundary value problems. Moreover, many times it
1s impossible to assert the existence of a solution or to know whether the
equations have one, many or an infinite number of solutions.

Although there are many numerical methods that enable one to compute
numerical approximations to solutions of equation (1), it is, in general
impossible to tell a priori how close the numerical solution is to a true
solution.

The literature holds examples of two-point boundary value problems that
do not have a solution but the equations arising from the numerical approxima-
tion scheme do have solutions. Also, there are examples of numerical solutions
that at first were believed to be good approximations but later were proved
to be wrong.

We developed a numerical scheme that enables one to take a numerical
solution to equation (1) and with the aid of that solution to compute, a
posteriori, guaranteed error bounds. That is, one can compute how far the
numerical solution is from the true solution.

The method described in this report is applicable in the cases where
f(t,y) is a polynomial in t and y . Although this is a serious restriction,
many problems that arise in applications do fall into that category. We also
give some indication of how one would extend our procedure to more general
types of two-point boundary value problems, that is, cases where f£f(t,y)

is not a polynomial in t and vy .

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




CHAPTER 1

A POSTERIORI ERROR BOUNDS

FOR TWO-POINT BOUNDARY VALUE PROBLEMS

1.1 Introduction

Consider a general Two-Point Boundary Value Problem (TPBVP)

y'(t) = £(t,y(t)) Qs t <
(1)
+ =
Bly(O) Bzy(l) w
where f:Rn+l S Rn, f e C2 and B_, B are nxn matrices, w € Rn.

1 2

Unlike Initial Value Problems where the theory assures us that
for a large class of equations there is a unique local solution,
TPBVP can have one or many or no solutions at all. Unless one makes
very strong‘assumptions on the function f in equation (1) the ques-
tion whether a solution does exist or whether it is unique is hard to
answer. Many times numerical solutions to TPBVP are computed without
establishing the existence of a solution. The error analysis of
numerical methods for solving TPBVP assures us that if a soclution
does exist and is locally unique and the discretization parameters are
small enough, there is a locally unique numerical solution which is
close to the true solution (see Keller [22], de Boor and Swartz [2],
Krasnoselskii et al [24]). The above theory is unsatisfactory for
two reasons: a) It is hard if not impossible to prove by analytic
methods that there is a solution. b) 1In general it is impossible to
know how small to make the discretization parameters.

Several numerical methods for estimating the error made in the

numerical solution of differential equations are known. The most

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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famous one is Richardson Extrapolation to the Limit approach: If
the equations and the solution are smooth enough, one can show that
the error admits an expansion of the form

K
- & 3 k+1
y, - vix) =] nle (x) +om .

j=p

Based on this expansion one can get asymptotic error estimates
and one can improve the solution. In [47], Pereyra gives a survey of
such methods. Henrici(see [16]) points out that one can solve numer-
ically the differential equation satisfied by the dominant error term
in order to get a good estimate of the error. Some methods like the
Runga-Kutta-Fehlberg methods have error estimates built in. In [46],
Zadunaiski describes another type of method. He interpolates the
numerical solution by a local polynomial. Then, using that poly-
nomial, he constructs a pseudo-problem for which the solution is
known. He estimates the error in the numerical solution by computing
the error made by the integration process in solving the pseudo-
problem. More recently Babuska and Rheinboldt [ 1] analyzed some
aposteriori error estimates for TPBVP of elliptic type solved by the
finite element method.

Numerical estimates usually work very well. However, these are
only estimates. Numerical estimates can always fail. It was pointed
out by Lyness and Kaganove in their paper "Comments on the nature of
Automatic Quadrature Routines" [25], that numerical schemes which
estimate the error by considering function values at finitely many
points inevitably may fail, even in the simplest case y'(t) = f(t),

that is integration.




Therefore, it is desirable to construct numerical schemes that
will enable one to take a numerical solution and bound aposteriori
the error in that solution. By doing so, one also proves existence
of a solution. We would like to stress that we are not concerned
with error estimates. We are interested in computing guaranteed error
bounds. Error bounds are more expensive than error estimates, but in
many cases the ability to talk about the accuracy of the numerical
solution with certainty is important.

Many times the existence of a solution to a single second order
Boundary-Value problem with separated boundary conditions can be
established by the "Shooting Method": One can find two valuves of the
missing initial condition such that the solution of the initial
value problem with one initial value will "hit" above the end
condition and the other below it. Since the solution of the differ-
ential equation is continuous as a function of the initial conditions
(see Coddington and Levinson [ 8 ]), there must be a value of the mis-
sing initial conditions that will make the solution "hit" the right-
hand side exactly. However, the above idea cannot be used to analyze
more general problems.

A very general approach to the question of existence and apos-
teriori error analysis was suggested and analyzed by L. V. Kantorovich.
He generalized Newton's method for solving nonlinear equations to a
general method of solving nonlinear operator equations in Banach

spaces.
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In order to describe Newton's method in Banach space and
o4
Kantorovich's theorem we first describe the following concepts .

Let X and Y be Banach spaces and L be a bounded linear operator

from X to Y. The induced operator norm of L 1is defined by
||LH = sup ” Lx”Y .
=1
* g
Let B(X,Y) be the set of all bounded linear operators from X to
Y. If we define addition and scalar multiplication in B(X,Y) by

\%

(W+ 2) ¢ Vx

wx + 2Zx ¥xe X .
V = 02 € VX = 0Zx ¥ x € X

then it is easy to see that V 1is a bounded linear operator from X
to Y and that B(X,Y) is a vector space. It is well known that
B(X,Y) is itself a Banach space. (see [20]).

Let P be an operator from an open set D < X into Y . If
there is a bounded linear operator L ¢ B(X,Y) such that

||p(x0+u) - P(xo) - Lu||Y

lim
lall,~ o ol

= ’

then P 1is said to be differentiable at xo and the bounded linear

operator P'(xo) = L is called the Frechet derivative of P at Xy

If P is differentiable at every point of the open set D then the

mapping P' : x0l+ P'(xo) is an operator from D ¢ X to B(X,Y)

and therefore one can talk about the derivative of such an operator.

That derivative is called the second Frechet derivative of P, at xo,

and is denoted by P"(xo).

For a full treatment see Kantorovich and Akilov [20] and also Rall
[ 32}




. |

Note that P"(xo) € B(X,B(X,Y)) and for u,v ¢ X,

P"(xo)[u] € B(x,y) and (P"(xo)[u])[v] e ¥

The induced operator norm of P"(xo) is:

e x|l = sup sup [l (x ) ) vl ],
o fl=1 v =1
Example:
Equation (1) can be put in the above framework. Let Xl be the
space (c}(0,11)" and X, = (C (0,110 x R", that is: |
X = {Ele ¢ S AL = T i)
1 i
= :
i {[p]lfie efoat, p R} .
A norm on Xl is (for example)
Ilfl& = max [max( sup |£ (t)|, sup [£!(t)])].
1 Agi<n - GxExd erey’ ™
A norm on X2 is (for example)
max( max [ sup (|f, (£)])], max !pi!) "

Lsi<n 0se<l 1l<i<n
It is not hard to show that with the above definitions x1 and x2

are Banach spaces.

Let P : xl'+ X2 be defined by:

x' (k) =« E(t,x(t)
P(x) (t) = Ois frsnd
B,x(0) + B x(1) - w
Clearly solving for P(x) = 0 is equivalent to solving equation (1).
P'(xo) is the linear operator defined by
v'(t) - fx(t,xo(t))v(t)
P'(xo)V(t)= '
81V(0)+ Bzv(l)

where fx(t,xo(t)) is the matrix

3 £, (t,x (8)) \"
e ) A R
3 i,i=1
-5_ r
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The second Frechet derivative is given by:

8 x(t,xo(t))v(t))u(t)
P" (x ) [v,u] (t) = % L 02 e
0 - - =

82f.(t,x0(t)) 5
= . Note

where f (t,x_ (t)) 1is the tensor
XX 0 axj 9 X

k i,9,k=1

that the norm in Xl involves the first derivative and H y-x” 1s

small only if sup |y(t)—x(t)! and sup |y'(t)—x'(t)| are small.
0<e<) ozt

We are now ready to describe Newton's method in Banach space:

Recall the regular Newton's method: One is trying to find X, such

that £(x,) = 0. Assume that we have X, which is an approximation

to x,. We try to find x which is a better approximation to x, .

1L *
We write,
0= flx,) = f(xo+Ax) = f(xo) + f'(xO)Ax + Q(Ax)
If one neglect the term Q(Ax) and solve for Ax one gets
= L > i = + S - '
Ax f(xo)/f (xo) Now if x1 x0 Ax then xl xO f(xo)/f (xo), or
in general xk+1=’ﬁ<-f(xk)/f'(xk) which is Newton's iteration scheme.
Following the same reasoning one can generalize the above proce-
dure to operator equations in Banach space. Let XO be an approxi-

mation to x,. Assume that P is twice continuously differentiable.

We write
0 = P(x,) = P(x +8x) = P(xj) + P'(x,)4x + Q(4x) .
St b i : . . Q(Ax)[ =
By definition of Frechet derivative, P (xo), lim T 5

il axll ~o || ax ||

So if ”Ax” is sufficiently small one can neglect the operator
Q(Ax) and solve for Ax,
bx = =[P (x )1 P (x)
i 0 o'l

assuming of course that [P'(xol_1 exists. Again the general scheme




Bl

o5 B ey =)
is xk+l = xk [P (xk)] P(xk).

Analyzing the above scheme Kantorovich proved the following re-

markable theorem:

Theorem: (Newton's method in Banach space).

let X and Y be Banach spaces and let P:D € X * Y (D open

set) be a nonlinear operator. Assume that P ¢ C2(X,Y). Let
xO < X and assume the following:
a) [p'(xo)]'l exists
-1
- < an 2 (]
b) llxl xOH S where X, = X, [P xo)] P(xo)
-1
g I erax 1|l < B
d) H P"(x)“ SR for [[x-xOH Sl
e) h=nB .+« K< %—
1=-v1-2h
: > = —
) x> x, h n
then P(x) = 0 has a unique solution x, 1in the ball H x—xOH < r,
-1
. - » s - .
and the iteration scheme X141 xk [P (xk)] P(xk) will converge
o X

*

The above theorem enables one to prove existence by first com-
puting an approximate solution, then by computing the relevant con-
stants one can establish the existence of a solution nearby. 1In
addition, estimate (f) gives bounds on the difference between the
computed solution and the exact solution. Although the theory has
been known for more than twenty years it has been used very little
in order to establish the existence of solutions to continuous prob-
lems like TPBVP. After a moment of thought one realizes that the
actual application of the above abstract results to TPBVP is not

trivial. A careful formulation of the problem has to be made.

-
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In order to compute a rigorou bound on the error one has to be

able to:
L -1
a) Compute a reasonable bound on H [F (xo)] il
b) Compute a good bound on H xl-xOH c
c) Compute a bound on  sup I F"(xo)\l.
- <
X OH r
First, one has to choose the spaces X and Y . A natural choice is

X1 and X2 of the example. However, since the norm in Xl depends

on the first derivative and one needs to make n = H X -xOH small,

2l
the above choice implies that xé(t) has to be a good approximation
to x;(t). This is a very stringent requirement. Therefore, it is
desirable to find a formulation and a space X where the norm of

X depends on function values only. Even in that case bounding the
norm requires bounding the range of functions; hardly a trivial mat-
ter. (See Moore [29], and the references there.) Second, computing
a bound on H F'(xo)_ln implies bounding of norm of the Green's
function of a first order, linear, two-point boundary value problem.
Theoretical bounds for such a problem are usually impossible to ob-
tain so one has to devise a computational scheme for getting such a
bound. Third, one has to compute n and K. This computation takes
bounding the range of one and two dimensional functions on a finite
domain. This is not an easy task. (See Moore [29] and the refer-
ences there.) All of the above gets even more complicated by the
fact that computers compute with only a finite number of digits and
every arithmetic operation introduces some round off errors. If one
wishes to prove existence of a solution one has to take that point

into account.




The residuals will be very small functions that are the differ-
ence between almost equal but not small functions. Therefore, it is
impossible to decide apriori how many digits one needs to use in
order to be able to neglect the effect of round-off error.

Several authors have suggested various formulations and compu-
tational schemes that enable one to compute the constants of
Kantorovich's theorem. However, so far, the methods that are sug-
gested in the literature have some difficulties. Talbot [37] has
constructed a method that enables one to use a modified version of
Kantorovich's theorem to bound the error for single second order
boundary value problem y" = f(t,y) where the right hand side does
not depend on y'. In order to take the truncation and the round-
off error into account Talbot uses Interval Analysis techniques
(see Moore [30]). He computes an interval valued function that
contains the exact Green's function in its range. By computing a
bound on the range of the interval function, he is able to compute

1 ; :
H He also uses interval techniques to com-

a bound on || F'(xo)-
pute bounds on H xo—x1” and H F"” . His approach enables him to
compute guaranteed global bounds on the error. The major disad-
vantage of his method is that it requires large memory storage space.
Also, as pointed out by Talbot himself, it is desirable to solve a
more general class of problems. McCarthy and Tapia [26] have sug-
gested a different approach. They convert a single, polynomial,
second order, two-point boundary value problem into an equivalent

Volterra equation and use a modified version of Newton's method, due

to Tapia, to compute error bounds on the approximate solution.




Their method also suffers from some difficulties. The bound on

I F'(xo)-l” is given in terms of ek where L 1is a bound on the
norm of a certain fuuction. This bound is very pessimistic. For
L = 20, eL > 108. Such a large bound makes the possibility of get-
ting realistic zrror bounds, or error bounds at all, rather small.
Also the authors do not consider the effects of round-off error at
all.

Roberts and Shipman [34] have suggested to convert the problem
of two-point boundary value problem to a set of algebraic equations
by looking for the missing initial conditions. Then, they solve
that set of equations by the "shooting method". However, they do
not consider the error made by the process of solving the initial
value problem and therefore, their approach cannot be used to get
rigorous error bounds.

In [12] Cruickshank and Wright suggested a method for bounding
H F'(xo)-lu for 2mth order single TPBVP. They use the Green's
function of the 2mth derivative plus boundary conditions to convert
the TPBVP into an equivalent Fredholm integral equation of the
second kind. They use Kantorovich's Theory of Approximation Methods
(see [20], Ch. XIV), to relate the norm of (I—k)-l to the inverse
of the matrix that one gets by using polynomial collocation method
to solve the TPBVP. Their approach can also be used for systems of
equations and piecewise polynomial collocation methods as well.
However, their approach can lead to the inversion of very large
matrices. Although the matrices themselves are band or block band

matrices, their inverse is full. Also it is not always possible to

=10=




find an explicit form of the Green's function that will enable one
to convert the problem to an equivalent Fredholm integral equation.

Our method is to convert equation (1) into an equivalent Volterra
equation. Then we derive an explicit formula for the Green's func-
tion of that Volterra eguation. Using the formula we construct a
numerical scheme to compute bounds on H F'(xo)_lH and | xl—xOH
for function f(t,y) which are polynomials in t and y . We are
using only spaces of continuous functions.

This has two advantages:
a) We can use local polynomial interpolation in order to produce
continuous functions as opposed to global C1 piecewise polynomial
functions.
b) Only the values of the computed solution have to be a good
approximation to the true solution and not to the derivatives.
Getting a good approximation to the solution and its derivative is
of course harder than obtaining a good approximation only to the
solution itself. The requirement that £(t,y) in equation (L)be a
polynomial in t and y 1is very restrictive. However, a large

number of problems that arise in applications (most notably one

dimensional cases of Naviar Stokes equations), fall into that cate-

gory. -

We also would like to note that our method can be made to work
for functions f(t,y) which are factorable functions of t and vy.
f(t,y) can be approximated by Taylor series approximation and the

error made by that approximation can be accounted for. However, we

do not treat that case and we leave it for further study.




We conclude the introduction with an example of TPBVP that can
be treated by our method. The example looks simple but is far
from being trivial.

Consider the system of ordinary differential equations des-
cribing the steady flow of a fluid contained between two parallel,
infinite plane disks which are rotating about a common axis

BT & HE" & g6t =0

qn ‘f'hg' s hlg= 0

h (0) h'(0) = h(1) = h'(1) =0

g (0) Q. , g(l) = Q

0] 1

The above problems have attracted considerable attention.
In [27], McLeod gives a list of more than twenty references about
work concerning the above problem. Although the physically inter-
and IQ

esting problem is when IQ are very large, existence

proofs are known for a very limited set of values of (QO'QI)' (see
Elcrat [14]). Moreover extensive computations have been carried

out and multiple solutions had been observed (see Wilson and Schryer
[41] and the references there). However, the known theory cannot
assert the existence of such multiple solutions nor could it rule
them out.

One "nice' feature of the above equation is that it is guadratic
in the unknown functions. Therefore, F' 1is a constant tenscr.
Using our method we prove the existence of a solution for boundary
conditions outside the range for which analytical proof is known.
Actually, Kantorovich's theorem guarantees the existence of a solu-
tion for boundary values in some ball around the original boundary

values.




1.2 The Theory:

In order to apply Kantorovich's Theorem to the problem

y' = f(t,y)
{: 0<txi (1)

Bly(O) - Bzy(l) = W
we use the following formulation:
Let C[O,l]n denote the space of continuous functions from [0,1] to

n

R. Let r e Rn. We use |r| to denote max ]r,l. For £ c C[O,l]n.
l<i<n

we define the norm of f by:

lell= sup | £(0)] = sup max (|£. ()] ).
0<t<i Oot<i. i<iem

We denote by CO[O,l]n the space
c,10,11" = fg € c10,11" | g(0) = 0} .

Clearly C[O,l]n and CO[O,I]n with the norm H-H are Banach spaces.
n
Let A be nxn matrix. We use |A| to denote max ( Z :ai.l).
l1<ic<n j=1 J

Let W(t) be a nxn matrix valued function on [0,1]. We define the
norm of W by

lel = sup |W(t)|.
Ost=<1l

7 : n+l
Let f be a twice continuously differentiable function from R to

R'. Define F:c[0,1]" - co[o,l]n x R" by

u(t) - u(0) - [“£(s,u(s))ds

Fu(t) = 0 . (2)
Blu(O) + Bzu(l) -w

Clearly solving for Fu = 0 is equivalent to solving equation (1) .

F'(xo) : the Frechet derivative of F at xO is given by:

0 (3)

vit) - vio) - [* £ (s,x,(s))v(s)ds
F'(x,) vl (t) =
B,v(0) + B,v(1)

«]3=




n
where fx(s,x) is the matrix {: :} EE M € C0[0.1] x R

{r(t))' then v = F' (x ) 1 [n] is the solution of

vit) ~ v(0) = [~ £ (s,xy(s))v(s)ds = r(t)

0 (4)
Blv(O) T 82 v(il) = p

F"(xo) the second Frechet derivat:ve is given by:

€
J'f (£ (s, (s))uls))w(s) ds
L 0

b
where f (t,x) 1is the tensor s W S [ S (T, T
XX ijaxk

F"(XO)[er](t) = (5)

Let x € c10,11" be fixed and denote £ (s,x5(s)) Dby A(s). A(s)

is a nxn matrix valued function.
Let Y(t) be the nxn matrix that solves the following initial
value problem:

Y'(t) = A(t)Y(t)
(07 o (6)
Yoy = T i

We are now ready to derive a formula for F'(XO)-I .

Theorem:
Let R = B1 + B2 Yi(L)

F'(xo)-1 exists if and only if R is nonsingular and

) T E®) - yor e, [y s)als) r(s)as
0 p 10
sy @B D [! v e)AaG)r(s)as
t
- Y(OR T(B, r(1) +p) + x(t) (7)
Proof:

Since A(t) 1is continuous on [0,1] it is well known (see

Coddington and Levinson [ 8]) that Y(s) is nonsingular for all

=14=
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A ? ; . =1 :
s « [0,1]. So equation (7) is well defined provided R exists.

ILet w(t) = Y(t) ft Y-l(s)A(s)r(s)ds + r(t), then, w(0) = 0 and
0
w(t) - w(0) - [% a(s)w(s)ds - r(t) =

0
vit) [* vy Hs)a(s)e(s)as - IF nisivee) [® ¥ iminedein)as as
0 0 0

- ft A(s)r(s)ds =
0

(integrating the middle terms by parts)

= v [ v hs)ale)r(s)as - vo) [Ty warwau
0 0

+ [T vy s)als)rs)as - [F als)r(s)as = o

0 0
therefore
=
w(t) - w(0) - [~ A(s)w(s)ds = r(t)
t g n
Since Y(t) - Y(0) - f A(s)Y(s)ds = 0, for any o ¢ R
0]
v(t) = w(t) + Y(t)a is a solution to:
t
v(t) - v(0) ~ [T A(s)v(s)ds = r(t). (8)
0
Clearly any solution to (8) is of the form w(t) + Y(t)a for some
@« e RP. If v is a solution of equation (4) then

vit) = v(o) [T Y (s)a(s)r(s)ds + Y(t)a + r(t)
for some a ¢ R .0 The condition
BlV(O) + BZV(l) =02 implies that
Bja + leY(l){ él Y—l(s)A(s)r(s)ds + al+r(1) = p
hence

(B, + B, Y(1))a = p=B,[Y(1) fl v (s)a(s)r(s)ds + r(l)]

0
hence
ki = 0-B,(Y(1) [T ¥ N (s)A(s)x(s)ds + r(1)] (9)
0
_15-




Therefore if R 1is nonsingular

a = R_l{p - B2[Y(l) fl Y_l(s)A(s)r(s)ds + r(l)]} (10)
0
and

vie) = wo) [ @ar(sras + R -y () [y Hs)a(e)r(s)as
0 0
-B,r (1]} + r(t)

v [Sy N e)als) e(s)ds

= v(&)R T {(B.+B
A 0

2

- B2Y(l)le_l(s)A(s)r(s)ds + p=Br(1)} + r(t)
0

= vr B [ @A) r()ds - YR By [ T (s)A(s) r(s)ds
0 3 5

¥ Y(t)R—l(p—Bzr(l)) + r(t)

- v(wr B[S (s)als) r(s)as
0

R R [T A e (s)as + YR =B r (1)) + x(t)
t

= Y(t)R"lBlftY'l(s)A(s)r(s)ds+-Y(t)(R'lal—x)fly'l(s)A(s)r(s)ds
0 t

+ Y (OR (=B r (1)) + x(8).
Conversely by virtue of the above computation, equation (9) has a
unique solution only if R is nonsingular. Q.E.Ds
Remarks:
-1 -1 . :
1) If we replace Y " (s)A(s) by =(Y "(s))', we can rewrite equa-
tion (7) as :

r(t)] i

P o (T - vr e [fr ) e (sas -

0

- v(6) R7B -0 [T (v H(s)) tr(s)ds - Y(0IRTN(Br(1)40) + r(t).(11)

e

2) Using the above equation we get
[| F*(x )'lH <|[Y|[{(f1|(Y-l(s))'lds)max(|R_1B |,|R_1B -1|)+|R'1B |
o - 0 i 1 &

+ |R_l|} % 3» (12)




1.3 Bounding the Constants of Kantorovich's Theorem:

In order to construct an effective numerical scheme we assume
that the function f(t,y) in equation (1) is a polynomial in t
and y.

We would like to note that all functions involved can be ap-
proximated by local Taylor series expansions and therefore the pro-
cedures we are about to describe can be used to compute the desired
bounds even if f is not a polynomial. The difference between the
exact eguation and the local piecewise polynomial approximation can
be accounted for. 1In the present work we do not investigate this
possibility, and we leave it for further study. 1In any case as was
pointed out before, many problems that arise in applications are poly-
nomials in t and vy .

In order to take into account the round-off error we are using
interval arithmetic. The use of interval arithmetic at the present
time is very expensive since one has to use simulated floating point
arithmetic. The ratio of speed between the hardware floating point
arithmetic and the interval arithmetic we are using is about 1:1000.

Although the scheme we are proposing does not require a large
volume of computation, the use of interval arithmetic makes the method

expensive to use. If one is not interested in actually proving the

existence of a solution and one does not wish to take round-off error
into account the use of double precision will suffice. We would like

to point out that in computing || F"(xo)-IH and || X, =X we use

o
interval arithmetic only in order to take the round-off error into
account. Therefore, we do not get the pessimistic bounds that the

use of interval arithmetic can lead to.
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1.3.1 Bounding ||F" (x) ][

If the function f(t,y) in equation (1) is a polynomial in t
and y and we choose our initial guess xo(t) to be a piecewise
polynomial function, then fxx(t,xo(t)) will be a tensor of order 3
whose components are piecewise polynomial functions.

One way tc compute K (a bound on  sup (fox(t,x(t))m
x-x || < x

is to bound the ncrm of F (t,x (t)-I) where F is the interval 1
XX 0 XX
extension of fxx (see Moore [30]) and I is the interval [-r,r]. J

[Fxx(t,xo(t)-I)]i is a piecewise polynomial interval function.

Ijlk

In section (1.4) we describe how one can bound the norm of such

functions. Another way to compute K is to bound “ fxx (t,xo(tH“
and then to compute a crude bound on sup foxét"X(t))”'
=N

Since each component of fxxx(t,x) is a polynomial in t and x
it is not hard to compute a crude bound on H fxxx(t,x(t))H .

1.3.2 Bounding || F'(xo)—lH

Let A(t) denote fx(t,xo(t)L Let Y(t) be the matrix solu-

tion of the initial value problem

Y'(t) = A(t) - Y(t)
e R | ;
Y(0) =1

It is well known that Y ~(t) exists and is the solution of:

Z2'(t) -Z(t)Aa(t)

Z(0)

1R

Let V(t) and W(t) be matrix valued functions approximating Y (t)

and Y—l(t) respectively. Assume V(0) = W(0) = I .

Y(t) - V(t), Ez(t) = Y_l(t) - W(t). E. satisfies the

Let El(t) 1

18«




equation

E.(t) = ft A(s)E, (s)ds + X (t) (13a)
1 ’ 1 1
where X (t) = I - v(t) + [ A(s)V(s)ds also
0
E,(t) = -/ E_(s)A(s)ds + X, (t) (13b)
2 £ %3 2
where X2(t) = I—W(t)--ft W(s)A(s)ds. Therefore
0
E. (0] < |x. (0] + [% |as)]||E, (s)]as iw 1,2,
b X % o 0 > |

In order to bound the norm of Ei in terms of || xi” and || a||
one can use the following well known lemma (See [8] Chap. 1).
Lemma (Gronwall inequality).

Let ¢,Vy,x be real piecewise continuous functions on a real
interval I = [a,bl, x>0 on I and suppose that V¥Vt e I

e(t) < vit) + [ x(s)e(s)as.

a
Then
¢(t) < () + [E x(s)u(s) exp (f¥ x(w) auas.
0 s
The lemma implies that
lE (0] < |x. (0] + [Flas)]]x, ()] exp (f° |acw) |auw)ds
1 L 0 & 5
< N %l @+ [Fla | exp ([¥]aw|awas})
0 s
= |l x.|| -1 + exp( ftIA(u)ldu)(ft--g- exp(-fslA(u)Idu)ds)}
| 0 0 ds
= ![xiH {1+ exp(ftlA(u)Idu)(l-exp(-ftlA(u)Idu))}
0 0
= || x. || - exp( ft|A(u)|du) <|Ix. || - exp(]|a]lt)
i o - "7
: . P 20 8
The above estimate is very pessimistic and for H AH = 20, e > 10

so the error bound will be very large. However, we can use this

estimate on small subintervals as initial bound for the error and

e




then improve that bound, that is: for u < £ < uth

lE. ()] < |[E. @] + |x. (&) - x. (] + [“lacs)|-|E, (s) |as
i = 3 3 i i
hence »
. |
e, ()] < (JE, (] + ||x. () = x, (]| - eh'IA | (14)
) ¢ = 3 i .
where the norms are computed on the interval [u,u+h]. If h is small

the above estimate is not a gross estimate.

Improving the bounds on || Ei” .

Since Ei(t) satisfies equation (13), one has, by the theorem

in section (1.2)

B (1) = v(t) [T Y H)a(s)x (s)ds + X, (t)
0

= (&) + B (80) [T(H(s) + E,(s))A(s) X, (s)ds + X (t)

0
hence

e )] < (Jver| + [e.o )« [Swis)]| + B () ) ]ats) | |x(s) |ds
1 1 5 2
+ le(t)| :
Similarly
IE2<t>l < (Jwee)| + lEz(t)l>ft(IV(s)l + IEl<s)l)|A(s)||x2<s)|ds
0
+ [x, ] .

Using the above estimates we arrive at the following algorithm:

Notation:
et Q= % <%, wee $%X = 1 be a division of the interval
1 2 n+1l
[0.2].
i Wiy 7S Pl
a, o sup |A(t)|
< <
xi_;_xi+1
o t) = i
r 2 f:fx |X1( ) x(xl)l
p L S
«20=




}i > sup [xz(t) - Xz(xi)l
X <Esxn.
=il
v, 2 sup |V(t)]
=
X.<E<X.
A S s o
w, > sup IW(t)l
3!
X, <t<x,
I ==
z, > sup |X1(t)|
éi >  sup |X2(t)| -

We want to compute li'ii such that

I su E, (t)
g plll
X . <SESX,
d—"—"rEl
L. = sup | B, ()]
G 2
X.<t<x,
J—t=—ge)

define 2. =4 _ = 0.

0 0
Then by estimate (14) if
0 h.a
L. = (2 +r)et?
1 Al i
h.a
20 _ A0 - s o
S (Zi+l * rl)e
then
2? > sup |E1(t)|
g St Y
= sup |E (t)|
2
X, <t<x,
s
also if
i-1
1 4
el v, 40D ) W, o+ 22, ah
i i, 3j
J=1
+ (v, + 29) (w, + ﬁg)z. ah, +r
& -
and
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il= w, + 2D ) (v, + 22, ah, +
i

i=1

+ (w_+§9)(v,+£9)i_ a.h, + .
AREE A G e i
then

7} > ,ifp |E ()| ana Q% > sup ) (t)|.
i FIREX 1L L = xlit:xi+l 2

A A0 Al .

So we set 2. = min(lQ,Q}) and £, = min(l?,%.). We also would like
1 1 i a4 s G R

to bound Eé(t) because we need to compute a bound on

Ilky'l(s))' |ds. since Ej(t) = A(t) E,(t) + X)(t) it follows that
0

Feyll < lall - 1l eyl + Il xsll

The above estimates enable one to compute good bounds on

H Y| fl|(Y—1(s))'|ds. First one computes numerically the values of
Y an;) Y on a sequence of points. Then interpolate these points
by a local polynomial. This local interpolation scheme will give V

and W . Then using the above algorithm one can compute rigorous

bounds on || Y|| and fl|(Y-l(s))"|ds.
0
-

1.3.3 Computing a Bound on “ R-IH.

In the previous section we showed how one can .~mpute

5, > vy - Y(1)|. Let
D =B, + 82V(1)
then
[R-D| < |32|51 =5, .
If |D-l| * 8, <1 then rR™!  exists and
1-|p *$,
22w




!

[p]2-s,
= 1—062 ?

Sl - =1
In general it is impossible to compute D exactly. Only a good

b) _1|

h . =] ;
approximation to D can be computed. Let C be a matrix such

that |I-cD| = 65 <1 then [D-ll i =

Remarks:

: =1 o . : :

Computing D by Gauss elimination might not yield a very

: ? =it : ’
good approximation to D ~. However, if we compute a matrix C such
that |I-CD]< 1, this approximation can be improved by Newton's
method. The condition II—CD| <1 1is enough to guarantee that the
iteration will converge. Therefore, one can compute an approximate

inverse accurate to machine precision.

1.3.4 Computing a bound on n = ” X)X,

1

i

norm of the Green's function times the residual. If the norm of the

An obvious bound on n is || F'(xo)- F(xO)H , that is, the

Green's function is not very large the above estimate is good enough.
However, this is an overestimate and n 1is usually much smaller.
One way of obtaining better bounds on n 1is to use the explicit
form of the Green's function in order to compute xl(t), that is:
€
Let v(t) = x,(t) = x,(t), r(t) = xo(t)—f £(s,%,(s))ds - x(0)

0
then by the theorem in section (1.2)

v(t) = Y(&) ft(Y.l(s))l r(s)ds + Y(t)au + r(t)

0
where o 1is given by equation (10). Therefore,

=2 3=




v(t) = (V(£) + E (£) { |7 (W'(s)+Ej(s))r(s)ds + & + E } + r(t)
0

= ViE) o ft W'(s)r(s)ds+a} + r(t)
0

+E (0 (5 Y Hs) r(s)ds + )
0

t
+v(t) { [ Els)r(s)ds + E_}
2 o
0
where o is the computed value of o and Eu = a-a. Therefore

vl < |l v f(')W'(s)r(s)ds+&H
0 (15)

+ e | Y s fas -
0

le [+l alb + VIl eyl

ell+ e |+ |l £

In orde. to compute «, one can use the following:

Let C be the computed approximation to R-l and EC = R—l—c.

By equation (10) (assuming p=0)

o = -R B Y (1) fl Y-l(s)'r(s)ds - R B B =
2 0 2
= -(R_lBl-I) fl Y-l(s)'r(s)ds - R—lB2 r(l) =

0

-{[(C+E )B -I]fl(w'(s)+E'(s))r(s)ds + (C+E )B_.r(1)}
c ok 0 2 &L

-{(CBl—I)f1 W'(s)x(s)ds + C B, r(l)}
0

: 1 A T U
-, Bltof W'(s)r(s)ds +0f E;(s)x(s)ds] + E_ B, r(1)}

= o+ b .
o

A bound on ,Ea, is given by:

o

Bl [ @r@as| « ey Il -lx )

le,| < |Eg
0

+lE |+]B, x(D)] (16)
c 2
Note that since V,W,r are all piecewise polynomial functions,

v is a piecewise polynomial function and all the necessary
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computations can be carried out. The ways one can compute bounds on
|EC|,|E1 IL ||E; H and c)fllY—l(s)llds are already described in the
previous sections. Therefore,by using estimates (15) and (16) one
can compute a bound on n .
Another possibility for computing n is to solve numerically
the linear TPBVP:
'

v' = Av+r

Blv(O) + Bzv(l) =0

where r(t) = f(t,xo(t)) - xd(t) and A(t) = fx(t,xo(t)). A bound
on || xl-xOH will be n = [[v| + ||F (xo)-l| ‘llg|] where
q(t) = v(0) + [F a(s)v(s)ds - v(t).
0
In order to get a better bound than n = H F'(xo)-lH||F(xO)H

one has to take the discretization parameter smaller than the one
used in the original equation or use higher order method (or both).
Then, hopefully, Iqu will be much smaller than H F(xO)H . Since
we have a bound on H F'(xo)_l” we know how small ” q H has to

be in order to get a realistic bound on n .
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1.4 Bounding the Norm of Piecewise Polynomial Functions.

In order to compute bounds on the quantities described in the
preceeding secticns one needs procedures for bounding the norm of
piecewise polynomial functions on a finite interval. The polynomials
may have interval coefficients.

In this section we are considering the above problem. The dis-
cussion is somewhat elementary. But finding effective procedures
for bounding the range of piecewise polynomial functions is important
enough to warrant our consideration. We wish to find a good balance
between speed and accuracy. We are only considering robust algo-
rithms, that is: algorithms that are guaranteed not to give erro-
neous answers.

We begin by showing that bounding the range of interval poly-

nomials can be accomplished by bounding the range of at most 4 poly-

nomials.
v i
Let P(x) = X Aix be a polynomial of degree n with inter-
i=1
val coefficients. We wish to compute “ P” on the interval [a,b].
Case 1i) Q% a s

In that case let gq(x) and g(x) be defined by
n

!

a(x) sup(Ai)xl

i=0

i

n ;
z inf(Ai)xl >

i=0 s =

Clearly V¥xe [a,b] g(x) < P(x) < g(x) and q,g are the best

q(x)

possible functions satisfying the above inequality.
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=

Case ii) B < 0

Define
5 L i i
a(x) =) sup ((-1) A )%
i=0
L idi i
g(x) =] inf((~1)"A")x
i=0
again. x € [a,b] g(x) < P(x) :_&tx)
Case iii) a<o0<b
Define
(( n : .
z sup ((—1)1A.)xl a<x<0
a(x) = o :
aw = { i
. sup(A,)x 0<x<h
L =0 -
i n
Z inf((-1)*a,)x" a < x =< 0
ix) = < s i
a % .
) inf (a,)x 0<x<b
i=0 1 =" =

s
H

Therefore, by bounding, at most, 4 polynomials, one can compute bounds
on the norm of P(x). In our programs all polynomials are defined
on the interval (O,h] where h is the size of the subinterval
Therefore, only case i) applies. 1In practice we resort to the above
reduction only if the width of the coefficients exceed a prespecified

tolerance.

1.4.1 Computing a "Rough" Bound on Piecewise Polynomial Function.

If the interval on which the polynomial pieces are defined are
small and the piecewise polynomial function itself is not very small,
one can use the following effective procedure:

Assume that the polynomial p(x) is defined on the interval

[0,h].
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a) Determine upper and lower bounds on P'(x); g 2 BYNx) > g
x e [0:h]-

One way to compute a,g is as follows:

n-k =

if P'(x) = ) b.x" let b, = max(0,b,) b, = min(0,b.)
: i = a1 =i i
i=0

and set
o 5 i n-1 i
= = +
q= by + 'Z b.h™ , q = b, 'Z b.h
i=1 i=1
b) if P'(x) > 0 or BPY(x) = 0 determine H PH by evaluating

P(x) at the appropriate end point.
) EE ig = 0hs a , then set
|| B|| = max( |P(0)+hql|,|P(0)+hg|) .

A better bound can be computed by making use of the value of P(h).

Figure 1,

set || P || = max(|P(0)+Ahg|, |[P(0)+(1-A)hg|) where
P(h) - P(0) - hg
hg - hg

It is our experience that the above procedure gives bounds with

enough accuracy for bounding piecewise polynomial functions which are
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not small and the right order of accuracy of the bounds on the
norms of piecewise polynomial functions that are very small.

We find the above procedure to be adequate for computing bounds
on |l a|l, [Ivll, ||w|] and for computing bounds on [|W-I-| Wads|
and HV-I-IAVds H . The reason being that we only needoto compute
bounds thaé)agree with the best possible bounds up to one or two
digits and we do not need the best possible bounds. In many cases

the above procedure is adequate for bounding

| vit) - vo) - [* £x,v(s)as] .
0

1.4.2 Computing a Good Bound on the Norm.

In order to compute a good bound on the norm of a polynomial
P(x), one can bracket the real zeros of P'(x) inside very small
intervals. Then one uses step ¢) in the previous method in order
to bound the norm. One well-known method for bracketing the real
zeros of a polynomial is the Sturm Sequences method (See for example
Isaccson and Keller [19]). Another way to bracket is to use an

algorithm suggested by Dussel and Schmitt [13]. First,one finds an

p % y I
integer r such that the rth derivative of P, P( ) does not have

a zero in the interval. Using the fact that P(r-l)(x) can have at

==t does have a zero or

not. If it does, the zerc can easily be bracketed since P(k-l) is

monotone. In the kth step, assuming that the zeros of P(r-k)(x)

(r-k)(

most 1 zero one can easily find out if P

are bracketed, one can use the sign of P X) on each subinter-

val in order to bracket the zeros of P(r_k_l)(x).
We have chosen to follow the idea of Dussel and Schmitt, but

instead of using an interval version of the Bisection Method as they
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do, we use an interval version of Modified Regula Falsi algorithm.
(For details of Modified Regula Falsi algorithm see Conte and
deBoor [9]1). We use the above method only on intervals of which
the function is nonotone. In the case of multiple zeros we are using
a simple gross bound. 1In that case the function is very flat and a
good bound on the zeros of the derivative is not needed. A careful
examination of all possible cases shows that the above procedure
gives guaranteed lower and upper bounds for the zeros. The details
of the above algorithm are given in the next section.

One last consideration. The intervals on which each polynomial
is defined are small. Therefore, the contribution to the norm from
the high powers is very small. One can bound the contribution from
the low powers and then add the contribution from the absolute value
of the high powers. This way the degree of the polynomials that one
has to bound is reduced. Note that it is not essential to compute
the bounds very accurately. Accuracy of two-three digits is good

enough.

1.4.3 _On Bounding the Range of a Polynomial.

k :
Let I = [a,bl, a > 0, be a finite interval and P(x) = ) aixl
(=0
a kth degree polynomial. In order to bound the range of P on I
we bracket the zeros of P', that is: We find a sequence of points

]

a< X, < X, ... <X =Db such that on each interval [x,,x.
n s S ()

P'(x) > 0, P'(x) < 0O or P'(x) may have a zero. We try to make

the interval on which P'(x) may have a zero as small as possible.

Once we have bracketed the zeros of P' inside small intervals,

we use the procedure described in the proceding section in order to
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bound the norm of the polynomial.
In order to bracket the zeros of P' we use recursively the
following elementary fact (Rall's theorem).

Fact: If f*(x) has no zeros in an interval, then f has at most
one zero in that interval.

We start by finding an integer j as small as possible such

that P(J)(x) has no zeros in I . Clea ly there is at least one

such j namely 3Jj = k.
If j = 1, then we are done. That is P'(x) has no zeros in

I . Otherwise, we assume we have a sequence of points a = Xy < X, <

b e < xn = Db and a list of integers 31’32’ e P Sn—l such that

S; € {-1,0,1} and

If 8, =1, P(J)(x) > 0 on ExX X, .0
x s 1
If s, = -1 P(j)(x) < 0 ont [X.:x Jes
1 £ S,
= (3) '
L s, = 0, P (x) may have a zero in [xi,xi+1].

We always try to make the intervals with possible zero smaller than
some tolerance € .

Given such a sequence and a list of integers, we compute a new

sequence of points a = 71 < Yy PRI S e b and a list of inte-
gers Vl,VZ,...,Vm_1 such that
: (j=1)
= >
Vi 1 if P (x) 0 on [yl'yi+ll
i : (3-1)
Vi = -1 1t P (x) <O on [yi'yi+l]
V. =0 L P(j-l) may have a zero in [y.,y
4 i'fi+l

Clearly at most k-1 such steps are needed in order to trap the

zeros of P'(x) on I
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We now describe the procedure by which we construct the se-

gquences yl,yz,...,ym; Vi,Vé,...,Vﬁ_l with the aid of the se-
quences X, ,X,, ... X i 51,52,...,Sn_1.A For convenience we denote
p(J_l) by f and p(J) by "

We scan the interval I from left to right. On each subinter-

val [xi,x. ] we determine if f has a zero. If it does not we

itl

proceed to the next subinterval. If it does have a possible zero,
then we bracket that zero in an interval as small as possible (up to
a tolerance €). In order to take round-off error into account, f
is evaluated in Interval Arithmetic. So at any point x that we
evaluate f we get two numbers E(x), f(x) such that

fix) > £(x) > £(x).

One has to consider the following different cases:

Case 1 S.=1.
_— i

In that case f is strictly increasing. Therefore, £ has a

zero in [xi,x.

j41] if andonly if f£(x;) <0 and f£(x; 120 .

1 -
Case l.a

If f(x.) >0 or f(x, .) <0 f does not have a zero in
=i i+l

]

Ko 1 %
{ 1’7141

Case 1l.b

1 E(xi) < 0 and g(xi+l) >0 , then f has a zero in the
open interval (xi,xi+1).
We can trap that zero inside a small interval by a disection

method (Modified Regula Falsi) which we will describe later.
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Case l.c

f(x,) < 0 and f(x, >0 but f(x.) >0
A e =" L =

1)

X. X,
3 i+l

There are two different possibilities.

1) i =1 in that case set Y, =% V1 = 0. Since £(x,) <0

il
and £(xi+ > 0 we can use the disection method to find § such

1)

that g};) > 0 and § is as small as possible (that is: y is a
machine representable number and fj;-e) < 0). set ¥y = 9, ¥ - j 4

and go to the next interval since f has no zeros in the interval
[y’xi+1] X

2}y 1. >k In that case we have yj such that £ might have a

zero to the right of yj and V, = 0. Again we can find y as
small as possible by the disection method such that f(§) >0 . Set
yj+l =y , Vj+l = 1 and go to the next interval. Note that if

~ +
gﬁxi) = 0 we can take y = X, where xz is the smallest machine
representable number greater than X, because E(xi) < f(xj) and

f 1is strictly increasing on . 7%
Y 9 [xl' i+l

)
Case 1l.d

E(xi) <0 and f(
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1) If I =1 set e TR -1 and find y as large as pos-

sible such that E(Q) <0. Set y_=y and V_=0

2 2

2) If i > 1 we have yj such that %(yj) < 0 and Vj = ~1. Find
y as large as possible such that E(y) < 0 and set yj+l = §,
vj+1 = 0.
Case 1l.e

f}xi) <0 i_f(xi) and §jxi+f S0 f(xi+1).
If i =1 then set y1 = xl, v1 = 0 and go to the next interval.
If i >0 then go to the next interval. (Remark: this is a very

unlikely possibility).

Case 2 §. = =1
_ )

This case is almost the same as Case 1. The only difference is
that the function is strictly decreasing.

Case 3 S. = 0.
—_— i

Case 3.a

There is no possible zero in the previous interval or i = 1.

In that case we compute f([xi’xi+1]) by interval arithmetic.

If there is no zero we continue with the next interval. If there is

a zero in f([xi,x. 1) then

i+l

If i =1 then y, =x V. =0 and if 0 ¢ [gsz), ?(xz)]

1° )
set y2 = x2, v, = sign(f(x2)). Otherwise go to the next interval.

2
i = ' v = %
If 1 >0 set yj+1 xi j41 0
T = \Y = si
IE 08 IS TG P Tada M Rstt gea T MERBEx, L))

else go to the next interval.
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Case 3.b
There is a possible zero in the previous interval.
£ = V =
If 0 4 (£(x; ) £(x; )] set Y561 = %141 and $41

sign(f(xi+ )), otherwise go to the next interval.

1
Remark: The above procedure does not give the tightest possible
intervals in cases 3.a and 3.b. However, since in these cases the
function is very flat in that neighborhood, one does not really need
a very tight bound on the zeros of the derivative. In [13] Dussel
and Schmitt describe how one can use an interval version of the bi-

section method to get tight bounds on the zeros even if the function

is not monotone. One can use that procedure if one wishes to .

1.4.4 The Dissection Algorithm.

The algorithm we use is a Modified Regula Falsi algorithm (see
Conte and de Boor [9]). We use two versions: one for functions that
take interval values, and the other for functions that take real
values. Both algorithms differ from each other by minor details.

We assume that we are given an interval [a,b] such that
f(a) » £(b) < 0O . At each step we have FA and FB such that
FA'FB < 0. We compute X by: A = 1/(1-FA/FB). Clearly 0 < X < 1.

In order to avoid problems of convergence and overflow-underflow,
if A <6 weset A=0 ©rif 1=k <6 we set A = 1=6. § is a
given small number, § > 0. After we determine 0 <)X <1, we compute
a point x in the interval (a,b) by x = Aea + (1-1A)° b. If
0 ¢ £(x), then we have found a zero, otherwise depending on the sign

of £(x), we replace a or b by =% &and FA or FB by £(x).
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If a (or b) had been replaced in the previous iteration and is
being replaced again we set FB = FB/2 (or FA = FA/2). The above
step prevents the possibility of approaching the zero only from one
side. If b-a < € then we are done. Otherwise, we compute new
and so on... . In the case where f 1is an interval valued func-
tion, If 0 € f(x), then we check if 0 4 f(x - g) and

04 £(x + —25-); if this is true we take (x - g— X + =) to be the
desired interval.

TE O et Elxi= ;—) or 0 € f(x + %) then we use the same proce-
dure for f and f in order to find the intervals containing zero
of f and f . Using these intervals and the sign of f' we deter-
mine an interval containing the zero of f .

In case E(x) =0, [x—,x+] is an interval containing a zero
of f and the same is true for £ (x is the biggest machine
number smaller than x and x+ is the smallest machine number
greater than x). The above algorithm is linearly convergent since
the interval is reduced at least by a factor of 1 - § at each
iteration and at most by a factor of ¢§ . However, if § is small
(say 6 = 10_2 or 10-3) the algorithm behaves like a quadratic-
ally convergent algorithm. In some sense this algorithm is in

between the Bisection method (6§ = %0 and the modified Regula Falsi

(6 = 0).
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CHAPTER 2
A POSTERIORI ERROR BOUNDS - THE IMPLEMENTATION

2.1 On the Numerical Procedures.

In this section we describe the numerical procedures we use in
order to compute upper bounds on the constants of Kantorovich's
theorem.

Let us assume that we are given a numerical solution to equa-

tion (1) computed at a sequence of points a = x, < x_ < ...< X

il 2 n+l

= b. As an initial guess we take the piecewise polynomial function

defined as follows: On each subinterval [xi,xi ol Epoi opii=1

+1

xo(t) is the sixth order polynomial that interpolates the solution

and its derivative at the points x The values of the

M s
i* Fie1 %42
derivatives are computed via the differential equation. On the in-

terval [xn,x i xO(t) is the sixth order polynomial interpolat-

n+1l

X .

ing the solution and it's derivative at x oo
n-1 n n+1

First the residual is computed, that is:
T (EE=ia J(R)e = () = ft f(s,x_ (s))ds.
0 0 0
a

On each subinterval xO(t) is a polynomial. Since f£f(s,y) is a
polynomial in s and y , on each of the subintervals r(t) 1is
also a polynomial. Using the polynomial coefficients of «r(t) and
the algorithm described in section (1.4.2) a bound on || r| is
computed.

Second, the fundamental and inverse fundamental solutions are nu-
merically computed. One has to solve 2n Initial Value Problems :

n for Y(e} and n for (Y_l(t))T. The values of Y(t) and

(Y-l(t))T are computed at the same sequence of points that xo(t)

wl e




was computed.

We take V(t) to be the piecewise polynomial function approxi-
mating Y(t), and W(t) to be the piecewise polynomial function
approximating \-l(t). V(t) and W(t) are computed with the same

interpolation scheme used to construct xo(t).

The algcrithm described in section (1.3.2) is used to compute

bounds on || E [l , [[E,]l, l¥]l, [Pl¥te)t]as ana |5 )]
a
The bounds on |ix 1” ' Hx2|| (of equation 13a, 13b) as well as
the bounds on l|V|l, |!W|L llw'H and I AH are computed using

the rough bound described in section (1.3.2) .
Third, R = B + B2 Vi) andl €~ R—l are computed. Using
1.-1 =ik
the bounds on |E(1l)| and |c| bounds on ||, |r T-c|

max(]R-lBll,lR-lBl—Il) and ‘R-lB are computed (see section

|
E.3.3) )
The facts that the problem has separated boundary conditions

and that

implies that:

a) |Bll = |B2| =1
; a. B
b) Sl 5 AR S
where «,B,Y,8 are n/2 X n/2 matrices, then
& 0
R = i % and R_l = -1 1]
-8 Ta g
L G A 0
~1 -1
R B, = £ , R B -I= K
$ -B lu 0 s -8 la 0
and R~lB2 = ?1 #
- 0
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Therefore, max(lR'lsll, iR'lBl—I}) = g2l +1 ana lR—lei =
|8™1|. Using the above bounds the bound on Iip'(xo)'lll is com-
puted by formula (12).
The bound on ]]xo—le, n , is given by
n= el P e las - cetal s mw [ DIl + fxll
a

Since the problem has simple boundary conditions one makes sure the
initial guess xO(t) satisfies the boundary conditions. Therefore,

one can assume p = 0. The above bound for n 1is smaller than the

“|

bound ,[F'(xo)—l' 2l -

2.2 Function Representations.

The numerical solution to equation (1), the fundamental solu-~
tion and the inverse fundamental solution are continuous functions.
However, these functions have a discrete representation inside the
computer. We are using two types of representations:

a) Point-value representation: In this representation the

function is represented by a sequence of points (the knot sequence)

& 2 Ko SRS see K X, = b and a sequence of values Yyreeee¥

1 2 n

which are the double precision values of the function at x wrk

10 =
We use the same knot sequence to represent xo(t),thc approximate
solution of equation (1), V(t), the approximate fundamental solu-

tion and W(t), the approximate inverse fundamental solution.

b) Piecewise polynomial representation: In this representa-

tion the function is represented by the knot sequence and a 6xn

array of numbers. On each subinterval [xi,xi+1], the function is
5 . :

a 6th order polynomial p(t):Z aj i(t-xi)]. This polynomial inter-
j=0 7’

polates the values of the function and its derivative at the points
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b o = Gl -

Since computers compute with a finite, discrete set of numbers,
it is impossible in general, to compute the exact coefficients of
the polynomials. Moreover, the coefficients, usually, are not ma-
chine representable numbers. On the other hand the initial guess
xo(t), V(t) and W(t) are to be continuous functions. However, one
cannot guarantee that the computed functions are continuous. To
overcome this diffuculty we are using interval arithmetic (see [30]).
Instead of computing with one floating point number the computation
is done with two. One of the numbers is guaranteed to be smaller
or equal to the number we need and the other, greater or equal to
it. Therefore,one actually has two sets of polynomial coefficients.
The first is a machine representable set of numberé. Each of them
is guaranteed to be greater or equal to the corresponding exact co-
efficient. Similarly each floating point number in the other set
is guaranteed to be smaller or equal to the corresponding exact co-
efficient. Therefore, one has two polynomials; one which at any
point is greater or equal to the exact polynomial, and the other is
smaller or equal to it. Although it is impossible to compute the
exact polynomial itself, by bounding the range of these two poly-
nomials one gets a bound on the range of the exact polynomial.

(See also section 1.4.)
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2.3 The Interval Arithmetic package.

As was said before we use interval arithmetic in order to take
the effe~t of round-off error into account.

The interval arithmetic package we have constructed is based
on the Multiple Precision Package (See Crary [l10]). The interval
precision package was designed to be used with the AUGMENT precom-
piler. All subroutines that use Interval or Multiple arithmetic are
written in "extended" FORTRAN (See [l11]), and are translated by
AUGMENT to standard FORTRAN. For the use of AUGMENT see Crary [11].
The package is similar to the one written by Yohe [44]. However,
the package is a "scaled down" version; only routines that are
needed were constructed. Yohe's package was not used because we
needed more precision than that package provides. Yohe's package
is written in single precision arithmetic (approximately 8 decimal
digits). Our package uses 4 words per floating point number.

(About 32 decimal digits.) Therefore, each interval number takes 8
words .
The subroutines and functions available are:

1) The arithmetic operations: +, -, *, / .

2) Comparison operators: WBLs L eBBe g BTy BBy EBQu, JNEL.

3) Functions: INF, SUP, ABS, TSIGN, COMPOS, MAX.. INF, SUP,

ABS and COMPOS are the usual ones TSIGN is defined by:

TSIGN([a,b]) = 0 if a i_O & b

wif ]




and MAX is defined by:
MAX (ia,b], [c,d]) = [f,f] where £ = max(b,d).

4) Conversicon functions:

There are conversion functions from Integer, Double Precision,
and Multiple to Interval and from Interval to Double percision and
Integer. Type conversion has to be explicitly invoked and is not
done automaticolly. That is, the statement AI = D where AI is
of type Interval and D is Double precision, is not legal. The
function CTX(-) converts its argument to Interval, CXTD converts
Interval to double precision and CXTI converts Interval to Inte-
ger. Since the Multiple precision package is used to construct the
interval package the description deck of the multiple package has to
be submitted to AUGMENT in front of the Interval description deck.
The description decks of Multiple and Interval are given in the

Appendix.
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2.4 The Subroutine Package.

29

.4.4 General Information.

This package of subroutines enables one to bound || xl—xol
and || F'(xo)_lu. Most of the computation is done in multiple and
interval arithmetic. However, the user does not have to be very
knowledgeable about the inner working of the multiple and interval
packages. The main subroutine APOSTR does not have multiple or
interval arguments in its calling sequence.

There are five, user supplied, problem dependent subroutines.
Two subroutines out of the five use Interval arithmetic. In order
to be able to write these routines the user has to know how to use
AUGMENT (see [11]) and how to use a few polynomial manipulation sub-
routines. The polynomial subroutines, the interval package and the
description decks are provided with the package. The underlying
arithmetic is provided by the multiple precision package and is
available on MRC*LIB., that is Mathematics Research Center's re-
locatable library. Since the multiple package is written in UNIVAC
1100 series assembler, the package is not portable and no attempt
was madé to make it portable. We tried to make the package applic-
able to a large set of problems. However, the package was designed
as an experimental tool to test some of our ideas. It is not and
was not meant to be a general purpose production code.

We now give a short description of the subroutines in the pack-
age. A complete listing of the subroutines, the extended FORTRAN

source code as well as the Standard FORTRAN code produced by
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4.
AUGMENT is given as an appendix on a microfiche card.

2.4.2 Problem Independent Subroutines.

APOSTR: This is the main subroutine. It sets up the work space
for each of the subroutines, calls the subroutines that perform the
different parts of the algorithm and computes the final bounds.
See calling sequence description and explanations in the next sec-
tion.

INLIZ: Initialization routine sets up some needed constants.
SETKNT: This subroutine converts the double precision kn.t se-
quence to interval valued knot sequence.

GREENF: This subroutine puts the values of the solution into com-
mon block /SPLCFF/ and also computes the values of Y(t) and
(Y_l(t))T at the knot sequence. It uses subroutine DDESUB in
order to solve the initial value problems.

CMPORS: This subroutine computes a bound on the norm of the resid-

ual, that is: A bound on ||xo(t) = ftf(s,xo(s)ds — xO(a)Il.
a
BDGRFC: This subroutine implements the algorithm described in
section (1.3.2). It computes bounds on ||¥(t)] , fb|Y—1(s)'|ds,||A]L
a

CMRINV: This subroutine computes an approximation to R-1 where

R = Bl + BzY(b). The approximation is first computed by Gauss

elimination and then improved by Newton's method. The subroutine

-1 i “

computes bounds on H R “ ’ H BlR- and H BZR—lll using the

method described in section (lL.3.3)see also section (21)).

+ :
Only the MRC report has the microfiche card for obvious reasons. A
copy of the microfiche card can be obtained from the author.
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LEORMR: This subroutine computes the residual of V , that is:

Vie) - ftA(s)V(s)ds - V(a). (Recall that V(t) is the piecewise
polynom?al approximation to Y(t).) LEQRMR is used by subroutine
BDGRFC.

LQERMR: This subroutine computes the residual of W , that is

w(t) - Wi + [° w(s)A(s)ds. (Recall that W(t) is the piecewise
polynomial appioximation to Y—l(t)). LQERMR 1is used by BDGRFC.
CBSTPP: This subroutine converts point value representation of a
function to its piecewise polynomial representation. It computes
the coefficients of the polynomial interpolating the function and
it's derivative at 3 consecutive points.

PPNRM: This subroutine computes a tight bound on the norm of a
polynomial in a given interval. It uses subroutine PNORM which
is the implementation of the algorithm described in section (1.4.2).
PNORM: This subroutine implements the algorithm described in sec-
tion (1.4.2). It isolates the zeros of the polynomial's derivative
inside very small intervals and then bounds the norm of the poly-
nomial. It uses subroutine LOCATE in order to bracket the zeros of
the polynomial's derivatives and subroutine NORM1 in order to com-
pute bounds on the norm of the polynomial.

NROM1 : This subroutine is given a sequence of intervals containing
the zeros of the polynomial's derivative using this information it
bounds the polynomial's norm.

LOCATE: This subroutine is part of the algorithm for getting a tight

bound on the norm of a polynomial. This subroutine gets a sequence

of points where the kth derivative of the polynomial is either

-45~




positive or negative or may have a zero. Employing the method
described in section (1.4.3) subroutine LOCATE computes a sequence
of points where the (K-1)th derivative is positive or negative or
may have a zero. The intervals that could possibly contain a zero
are made smaller than a given tolerance.

BISECT: This is the dissection algorithm described in section
(1.4.4). This subroutine brackets the zeros of sup or inf of
an interval valued polynomial. The polynomial is assumed to have a
zero in the given interval. It is also assumed to be monotone.
BSCINT: The same as BISECT only it is the interval version of the
dissection algorithm.

PMXNRM: This subroutine computes a bound on the uniform norm of a

polynomial matrix. The bound is given by: max z la..[[ . The
1<i<nj=1 *J
bounds on the terms [| s || are computed by the "rough bound"

ij

method described in section (1.4.1).

UBEXP: This subroutine computes a bound on e? where a 1is a
positive interval number.

VCTINT: This subroutine integrates piecewise polynomial functions.
That is: it is given fxi u(s)ds and the polynomial coefficients

a

of u(t), x, < t < , and it computes the polynomial coeffi-

X,
i i+l

. u is a vector valued func-

: Tt
cients of f u(s)ds, x. L4l

< t <€ %
i — -
a

tion.

PPVLUl: This subroutine computes the double precision value of the
solution at any given point.

DIVDIF: Divided differences subroutine. It is used by PPVLUl to

compute the interpolating polynomials.
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IDVDIF: The same as DIVDIF only in interval arithmetic. It is
used by CBSTPP in order to compute the polynomial's coefficients.
DDESUB:: This subroutine solves initial value problems in double
precision. This subroutine uses Gragg's modified midpoint rule
with Bailirsch-Store's rational extrapolation method. It is es-
sentially the same subroutine as the one provided by Madison
Academic Computing Center. A modification was made to enable the
routine to store the solution's values at any given sequence of
points not necessarily equally spaced. For details about the use
of the subroutine see [49].

2.4.3 Polynomial Manipulation Subroutines.

In order to facilitate the manipulation of polynomials several
subroutines were constructed. All polynomials have interval coef-
ficients. The following subroutines are provided:

SUBROUTINE PLYNEG (K,A,B)

This subroutine computes B -A, A and B are Kth order
polynomials.

SUBROUTINE PLYADD(X,A,B,C)

(@]
I

This subroutine computes A+B, A,B and C are Kth order
polynomials.
SUBROUTINE PLYSUB(K,A,B,C)

This subroutine computes C = A-B, A, B, and C are Kth order

polynomials.

SUBROUTINE IPYMUL(K1l,K2,A,B,C)

This subroutine computes C A x B A is Klth order poly-

nomial, B is K2th order polynomial and C is (K1+K2-1)th order

«q 7=




polynomial.

SUBROUTINE PLYDRV (K,A,B)

This subroutine computes B = A', A 1is Kth order polynomial.

2.4.4 Problem Dependent Subroutines.

There are five problem dependent, user supplied subroutines.
Two of the subroutines compute with interval arithmetic and three
with double precision.

SUBROUTINE FUNC(XI,SOL,FSOL,L,K,KF)

This subroutine H 1is given the polynomial representation of
xo(t) on the interval [xI(1l),xI(2)] and it computes the poly-
nomial representation of f(t,xo(t)). The solution's polynomials
are Kth order and are interval valued.

The parameters:

xI:- Interval valued vector of dimension 2. It gives the end
points of the interval on which the polynomial representation is
valid.

SOL:- KxL interval array with the coefficients of the poly-
nomials.

FSOL:- KFXL array with the coefficients of f(t,xo(t)).

L:- The size of the system.

KF:- The first dimension of FSOL.

SUBROUTINE SETA(K,L,XI,SOL,A,KA)

This subroutine is given the polynomial representation of the

solution and it computes the polynomial representation of A(t) =

fx(t,xo(t)).
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The parameters:

K,L,XI,SOL:- The same as in FUNC
A:- A KAxXLXL interval array with the coefficients of A(t).
Remarks.

1) The above subroutines should be translated with AUGMENT.
2) The user could use the polynomial manipulation subroutines
to compute f(t,xo(t)) and A(t)
3) Note that the polynomials are of the form
P(T) = l; D(J) * (T-XI (1)) **(J-1)
J=1

Therefore, the polynomial representation of the independent variable
t on the interval [XI@), XE(2)]} 4dis (X¥(1),1,0,..<,0).
SUBROUTINE DEFUNC(T,Y,DY,STOR,IFLAG)

This subroutine is given the value of the solution at T in
Y and it computes £(T,Y) and stores it in DY. This subroutine
is used in computing the piecewise polynomial representation of the

solution.

The parameters:

T:- Point of evaluation.
Y:- L dimensional double precision vector.
The value of the solution at T .
DY:- L dimensional double precision vector contains the
values of £(T,Y).
STOR:~ Not used.

IFLAG:- Not used.
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SUBROUTINE DERIVS(T,Y,DY, STOR, IFLAG)

This subroutine is used in order to compute the fundamental
solution. It is given in Y the values of one column of Y(t)
and in DY the values of A(t)Y.

The paraneters:

T,Y,DY:~ The values of Y(I), I =1,...,L have to be put in
STOR (See [49] for saving options).

IFLAG:- not used.

SUBROUTINE TRDERV (T,Y,DY,STOR, IFLAG)
. : . : =1 P :
This subroutine is used in order to compute (Y ~(t)) . It is
. p -1 1 ;
given in Y the values of one column of (Y ~(t)) and stores in
T

DY the vector -A"(t)Y.

The parameters are the same as in DERIVS.

: : : -1 T ;

The differential equations that Y(t) and (Y ~(t)) satisfy,
depend on the solution xo(t). Therefore, the values of the solu-
tion at the knot sequence are put into an array in the common
block /SPICFF/LXI,C(-). LXI is the number of points the solution
is computed at and C is LXIxL double precision array with the
solution values at the knot sequence.

In order to facilitate the computation of xo(t) at any point
a subroutine is provided:
SUBROUTINE PPVLU1 (C,LXI,YHT,X)

The parameters:

LXI:- Number of points in the knot sequence.
C:- LXIxL array with the values of the solution at the knot

sequence .
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L:- The size of the system.

YHT:- L dimensional array with the values of the solution
at x.
X:- Point of evaluation.

2.4.5 The Subroutine APOSTR.

The main subroutine is APOSTR. It's calling sequence is:
SUBROUTINE APOSTR (KA, KF,L,NPT,SOLTN, FUNC,SETA,Bl1,B2 ,NRMINV, ETANRM,
WRKSPC) .

The parameters:

KA:- The order of the polynomials in the matrix A(t) =
e
fx(t,xo( ))
KF:- The order of the polynomials in f(t,xo(t))
(Remember that xo(t) is 6th order piecewise poly-

nomial function).

L:- The size of the system of differential equations.
NPT:- The number of points in the knot sequence.
SOLTN:- NPTxL double precision array with the values of the

solution xo(t) at the knot sequence.

FUNC:- Problem dependent subroutine.

This subroutine is given the polynomial representation of
xo(t) and it computes the polynomials f(t,xo(t)) for calling
sequence. See section (2.4.4).

The subroutine FUNC should be declared external in the calling

program.

-




SETA:- Problem dependent subroutine.

This subroutine is given the polynomial representation
of xO(t) and it computes the matrix polynomial A(t) =
fx(t,xo(t)). For calling sequence see (2.4.4). This sub-

routine should be declared EXTERNAL in th calling program.

Bl1,B2:- LXL double precision arrays with the coefficients
Bl and B2.

NRMINV:- Double precision value of the bound on H F'(xo)_lH

ETANRM:- Double precision value of the bound on ” xl-x0||.

WRKSPC:- Double precision work space array.

The dimension of WRKSPC should be at least
2*NPT* (L*L+2) +4*L*L* (38+3*KA) .
Please note
The knot sequence is not part of the calling sequence. It
must be put into the common block /DPSTEP/ STEPS(-) prior to the

call to APOSTR.
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2.5 Examples.

In this section we give two examples of computational existence
proofs. Analytical existence proofs for these problems are not
known.

2.5.1 Example 1.
Consider the following two-point boundary value problem:
ey = (y° - (t-1)%)y 0<t<1 (E1)
y(@) =aA, y(l) =B .

The above problem was suggested and analyzed by Howes and
Parter as a model problem for nonlinear problems having a contin-
uous locus of singular points (see [17]). They studied the asymp-
totic behaviour of solutions to this problem as ¢ - 0+. It is
not hard to show that the above problem has at least one solution
for any value of € > 0. However the existence of multiple solu-
tions was not ruled out. Moreover, Howes and Parter showed that if
@ < B_ijif ,Jﬁé: < A <1 there are at most three limit solutions

3 3

Indeed Francis Sutton [36]

as € - O+; y A, y= B and y Ej%?‘
computed, using finite differences, three solutions for € > 0
small, thus implying that all three possible limit solutions are in
fact obtained.

We also have found three distinct numerical solutions in that
range. Our numerical solutions were obtained by a collocation
method. The subroutine LOBATO by deBoor and Weiss [4] was used to
obtain the numerical solutions. Taking A = .96, B = .001 and
£ = 1/15 the above aposteriori error analysis was used to estab-

lish the existence of (at least) three distinct solutions.

5 3=
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Moreover, guaranteed error bounds were obtained.

Of course, the theory does not rule out the existence of more
solutions for € > 0. However, the theoretical results of Howes
and Parter combined with Sutton's computational results and our
existence results for € = 1/15 seem to support Sutton's conjecture
that Equation (El) has exactly 3 solutions for all 0 < ¢ < €y for

some CO > (0]

Althoﬁgh € = 1/15 is not very small Equation El is already
"stiff". As a matter of fact solution 3 (see figure 2) was
"stiffer" than solutions 1 and 2. 1In order to get reasonable error
bounds we had to modify the original programs so that it would be
possible to subdivide the interval into unequal subintervals. The
bounds on the residual were reduced by 4-5 orders of magnitude by
putting more points in the interval where the function and it's
derivative change very fast. Solutions 1 and 2 were computed using
201 points and solution 3 using 301 points. The bounds we obtained

are given in Table 1. We now turn to our computations:

Let us rewrite equation (El) as a first order system with

R = 1/¢€.
Yl Y2
- 7 v - (-1
dt Y2 R Yl Y2
1 0 yl(O) ; 0 0 yl(l) S A
0 0 y2(0) 1 0 y2(1) B

the matrix of partial derivatives is given by:
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0 1
A(t) =

2Ry R(yi - (t—l)z)

1¥2

The second partial derivatives are:

2%e, : 2%e X 2%, ol
aylay2 a2yl azyz
and
32f2 82f2 82f2
;5;:~ = 2Ry2 ' ;5;;- =0, 5§I§§; 2ryl

there fore

1 I

su meﬂiizmﬂlhmﬂa+f[%GH®)+6Rr.
Hx-x ? <z 0 0

O —
Therefore, the bound on the second Frechet derivative can be com-
puted by the above formula. Since Yy and Y, do not change sign
on [0,1] the above integrals can be computed exactly (Remember
that ' and y, are piecewise polynomial functions.).

In figure 2 we have plotted the three different solutions.

The error bounds we obtained are:

K‘ n B h 7 rO

-9 2 -5 -9
1| 77.5179 |2.40683x10 4.4769x10° | 8.3526 %10 2.4069x10

-9 2 -5 «9
2| 60.9082 |1.24323x10 5.0692x10° | 3.8386x10 1.24326%10
3] 37.98871]5.39276x10™° |1.7473x103 | 3.5795x107%| 5.3937:107°

Table 1
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Figure 2
2.5.2 Example 2.
This example was mentioned in the introduction. These differ-
ential equations describe the flow between two parallel infinite
disks rotating about a common axis. The equations are:

'V +hh" +gg =0

(E2)
g" + h gl S hlg =0

[

h(0) = h'(0) = h(1) =h'(1) =0

g(O) Q ’ 9(1) = Q .

0 b |
Although the above problem has attracted considerable attention
(See McLeod [22] and the references there), existence proofs for

solutions outside a small set of values of (Qo,Ql) are not known

(see Elcrat [14] and McLeod [22]).
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Hastings proved existence provided QO and Ql are suffi-
ciently small.
Elcrat, using a fixed point argument proved that: If
- < < 0
a) Qle [QO,O] and O_QO__

or

2 2 2
BHY Qe (O,Qo] and QO = Ql 2 €=

1
where C = %%2)'%exp(.25) + exp(gd - 1)—1/2

* 1.5 then equation
(E2) has a solution.

McLeod and Parter [28] proved existence of solutions for the
counter rotating case (QO = -Ql). They proved existence of solu-
tions for all values of QO > 0, Proof of existence in all other
cases is not known.

Many people have computed solutions outside the range where
the existence of solutions is known. Moreover, multiple numerical
solutions were obtained. However, none of the computational papers
give any error analysis. Although many of these computations prob-
ably give reasonable approximation to solutions of equations (E2),
there is at least one case where a computed solution was proven to
be incorrect. (See MclLeod and Parter [28].)

By using an a posteriori error analysis, the existence of a solu-
tion, outside the range where the previously known results apply,
has been guaranteed. Although we have not proven the existence of
multiple solutions (when QO and Ql are large enough), we believe
that with enough time and computing power (money) one could use our

method to establish the existence of multiple solutions. As a by-

product of Elcrat's proof the solutions he obtains are "monotone"
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in the sense that g' 1is of one sign. On the other hand, McLeod
and Parter showed thrat if there is a solution in the case where QO
and Ql are: positive, large enough and far apart, g' of that
solution must change sign. Moreover, numerical solutions where g'
does change sign were obtained (for example see Cerutti [6]). It
will be interesting to prove the existence of such solutions.

Note that the above problem is "stiff" and it gets "stiffer"

and |Q grow.

ol ,!

This numerical solution was computed with subroutine LOBATO at

101 equally spaced points. We computed with QO =7 and Q. = 1.

2 2
Note that QO Ql = 48,

The bounds we obtained are:

K
n B | h | r,
=G 4 -6
4 2.0154x10 1.60437x10 .1293406| 2.16597x10
§21
Kedem
x
{0
Elcrat
McLeod-Parter
Figure 3

In Figure 3 we have plotted the values of Q  and Q. for which

existence proofs are known.
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2.6 Conclusions, Remarks, etc.

In this work we have demonstrated a way to compute aposteriori
error bounds for polynomials two-point boundary value problems.
Some of the difficulties of other methods we;e overcome. However,
the problem is by no means completely solved. We list below prob-~
lems and questions left to be answered:

a) The bound on n = H xl-xO“ we use, is not the best possible
one. We suggested two other methods for computing n . These
methods have to be further investigated. Both methods suffer from
some difficulties. The first method uses the explicit form of the
Green's function and requires the manipulation of high degree poly-
nomials. The second method looks more promising, however, a large
amount of work may be necessary in order to make the residual, that
is xl(t) = ft[A(s)xl(s) - r(s)lds very small. In any case more
experiments :re needed before one could obtain better methods for
aposteriori error bounds.
b) We have chosen to interpolate the solution xo(t), Y(t) and
Y_l(t) .by 6th order polynomials. However, there are no compelling
reasons for doing so. More experiments are needed to obtain some
ideas and to gain some insight into good strategies for choosing
erpolation schemes.
c) The implementation of interval arithmetic, we use, is very slow.
A necessary condition for making interval arithmetic practical for
routine use is having the arithemtic done by hardware and not by
software. The prospects, in the near future, of having interval

arithmetic as a standard hardware option are not good, However,
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a new generation of microprogramable computers may make the use of
interval arithmetic practical.
d) We use interval arithmetic in order to take round-off error into
account. If one wishes to prove the existence of solutions one is
forced to take round-off error into account. However, it is our
experience that computations with double precision arithmetic give
the same results and round-off errors have ne¢ligible effects. Thus,
our method could be used to compute reliable err~r bounds although
the results would not be completely rigorous existence proof.
e) The size of the residual or the size of lel-xO” on each
subinterval could be used to decide how to redistribute or refine
the subdivision points. More experiments are needed in order to
find strategies based on the above information. Also one should
compare these methods with other methods suggested in the literature
(see [2]1, [71, [45], [48]).
f) As was said in the introduction our method could be extended to
problems that are not polynomials. If the function f(t,y) of
equation (1) is a factorable function of t and y (see Part A of
our thesis), then, since xo(t) is a piecewise polynomial function,
f(t,xo(t)) and A(t) = fx(t,xo(t)) are piecewise factorable func-
tions. Since one knows the Taylor series expansion of xo(t) on
each subinterval, one can compute Taylor series approximations to
f(t,xo(t)) and A(t) .

IE ;(t) is the approximation to f(é,xo(t)) and A(t) is

the approximation to fx(t,xo(t)), then:
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i) Using interval techniques (see Moore [30] ch. 10) one can
bound '1f(t)—f(t,xo(t))H and || a(t) - a(t)|| . Also if one takes
enough terms in the series expansion and the subintervals are small
enough, these bounds will be small.

ii) sSince f(t) is a piecewise polynomial function we can use
it in order to compute an approximation to «r(t) .
& 2
Recall that «x(t) = xo(t) - xo(a) - f f(s,xO(s))ds. If r(E) =
t - S t
xo(t) - xo(a) - f f(s)ds then «r(t) - r(t) = -f (f(s,xo(s)) =
3 a a
f(s))ds therefore
lell <l + -a) - llf(t,xo(t))-f(t)||.
iii) Similarly, A(t) can be used to compute approximation to
Xl(t) and X2(t).

Recall that

X, () = V(£) - V(@) - [° A(s)V(s)as .
1f :

X () = V(D) - v@ - [* AEV(s)as
then 2

Ix=x 0l < lla=all - f° |[vis)as) .
The same way, if iz(t) = W(t) - W(a) +aft W(s)g(s)ds then
x5, Il < lla-all - Tues) fas)
In turn the bounds on [[Xlll and ||:2|' can be used to compute
bounds on ||E1|| and ||E2||. (See section (1.3.2)).

Therefore, an algorithm, similar to the one used for polynomial
equations, can be used for aposteriori error analysis of factorable
two-point boundary value problems.

g) It is not hard to see how one can extend our method for problems

with nonlinear boundary conditions.
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